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A B S T R A C T

Rapid urbanization in metropolitan areas easily triggers flashy floods. Urban drainage systems conveying
stormwater out of cities are key infrastructure elements for flood mitigation. This study develops an intelligent
urban flood drainage system accounting for carryover storage through optimizing the multi-objective operation
rules of pumping stations for effectual flood management in Taipei City. The Yu-Cheng pumping station con-
stitutes the study case, and a large number of datasets collected from 17 typhoon/storm events are adopted for
model construction and validation. Three objective functions are designed to minimize: (1) the sum of water
level fluctuations in the flood storage pond (FSP); (2) the sum of peak FSP water levels; and (3) the mean
absolute difference of pump switches between two consecutive times along operation sequence. The non-
dominated sorting genetic algorithm II (NSGA-II) is applied to searching the Pareto-optimal solutions that op-
timize the trade-off between the objectives. We next formulate the optimal operation rules through a two-tier
sorting process based on a compromised Pareto-optimal solution. The comparison of the simulated results ob-
tained from both the optimal operation rules and current operation rules indicate that the optimal operation
rules outperform current operation rules for all three objectives, with improvement rates reaching 43% (OBJ1),
3% (OBJ2) and 71% (OBJ3), respectively. We demonstrate that the derived intelligent urban flood drainage
system can serve as reliable and efficient operational strategies for urban flood management and flood risk
mitigation.

1. Introduction

The fast-growing urban population in the world is an inevitable fact.
The rapid urbanization in metropolitan areas causes less water in-
filtration but flashy floods, which invariably increases flood risks.
Large-scale floods are ravaging the globe and often leave fatal con-
sequences in their wake. Global attention nowadays has been in-
tensively drawn to flood prevention for the protection of life and
property. Cohesive development and adaptation of new knowledge
should be made not only to reduce flood risks but to increase the flood
preparedness of residents and professionals (Becker et al., 2014; Chang
et al., 2014; Girons Lopez et al., 2017; Hsu et al., 2013; Kundzewicz
et al., 2014). Methodologies for the design of a sewer system control
hierarchy using temporal decomposition were explored (Mollerup
et al., 2016). Developing the optimal management of weirs, pumping
stations, reservoirs and inlets at floodwater retention areas can sig-
nificantly control the consequences brought by floods. Implementing
advanced technologies and operational strategies for the combined

sewer systems would be an important means to address challenges
encountered in urban drainage. Lund et al. (2018) provided an over-
view of methods and tools for performing model predictive control
(MPC) within the field of urban drainage, and they pointed out the
concept of smart cities might lead to new operational goals such that
MPC could be useful to migrate urban drainage systems from passive
traditional infrastructure systems to proactive adaptive systems based
on a high level of intelligent measures.

Intelligent urban flood control systems explored by artificial in-
telligence (AI) could promote the efficiency and reliability of drainage
infrastructures (Chen et al., 2017; Liu and Cheng, 2014; Mollerup et al.,
2016). It is desirable and beneficial to have a collaborative develop-
ment and applications of new knowledge and advanced technologies to
improve decision-making, increase community and flood resilience, and
reduce flood-related damages. This will increase the potential in finding
solutions to coping with highly complex problems such as multiple
objectives pump operation.

In response to the rapid rise of flood flow during extreme events, the
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traditional urban flood control strategy is to build embankments along
river banks to prevent cities from flooding. Besides pumping stations
are set up around the drainage outlets behind embankments to pump
flood water out of cities because gravity draining may fail during ex-
treme events. Undoubtedly, pumping stations play a decisive role in
urban flood control systems. Pumping stations unable to perform
drainage functions properly would bring flood disasters, which usually
cause property losses and residents’ resentment. Accordingly, there is
an urgent need for the optimal utilization of available means to flood
prevention. Nevertheless, current pump operation guidelines were set
up a long time ago and no pump operation rule was established parti-
cularly to cope with urbanization and climate change. Such phenomena
occur in many developed cities in Asia. For instance, Hiramitsu and Abe
(2001) stated that no well-defined concept of pump operation control
was built in Japan. Several approaches were explored to improve such
conditions. Chiang et al. (2011) proposed rule-based fuzzy neural net-
works to on-line predict the number of open and closed pumps of a
pumping station in Taipei City, up to a lead time of 20min. Yazdi and
Kim (2015) developed a real-time optimization approach to searching
the optimal policies for collaborative operation of drainage facilities in
a portion of an urban drainage system in Seoul. The operation and
maintenance cost of a pump station depends on a number of factors
including climatic conditions, hydrological conditions, the type and age
of pumps, quality of operation, and operator experience (Makaremi
et al., 2017). Conventional pump operation guidelines are often vague
and difficult to follow, and therefore skilled and experienced operators
are required. To overcome such disadvantages, there is an imperative
need to create new multi-objective operation rules for governing real-
time pump operation based on careful consideration of current hydro-
logical conditions and various pump operation objectives through sys-
tematical analyses and optimization mechanisms.

To protect cities from the ravages of floods, countermeasures to
flooding should make a close collaboration with sewerage systems and
river management. The optimal control of urban drainage networks
would aim at tackling the problem and generating intelligent control
strategies ahead of flood occurrence based on the monitoring data
transmitted from telemetry systems for minimizing flooding and sewer
overflows. This becomes a great challenge on account of the high
complexity and uncertainty of the flood control system as well as the
societal pressure on the efficient generation of solutions. In this study,
we implement a state-of-the-art technology to propose efficient multi-
objective pump operation rules for real-time urban flood control man-
agement. Previous studies facilitated AI techniques, such as genetic
algorithms (GAs), artificial neural networks (ANNs) and fuzzy in-
ference, to construct humanlike operation strategies regarding urban
drainage systems (Chang et al., 2008; Yazdi and Kim, 2015), optimal
pumping control (Cembrano, 2004; Zhuan and Xia, 2013), urban flood
forecast (Chiang et al., 2010; Hsu et al., 2013; Noymanee et al., 2017),
and flood deference (Tamotoet et al., 2008; Wang et al., 2013) for se-
curing cities of interest. Nevertheless, there were few studies addressing
the development of the optimal pump operation rules in urban drainage
systems using multi-objective optimization methods (Yazdi et al.,
2016). Among them, a global optimal control system was implemented
in a sewer network of Quebec to real-time manage flows and water
levels for reducing the frequency and volumes of combined sewer
overflows discharged into rivers (Pleau et al., 2005). Fiorelli et al.
(2013) proposed a control approach for a combined sewer network in
Luxembourg, which considered three optimization goals for sewer
systems and relied on a simple hydraulic model of the sewer system.

Plenty of real-world optimization problems are non-linear in nature
and have multiple conflicting objectives, subject to various constraints
(Deb, 2005). Conventionally, such problems could be solved by being
artificially converted into a single-objective problem. With develop-
ment in advanced technologies, multi-objective optimization can be
achieved nowadays, which has a tremendous practical importance. Yet
difficulties arise because such problems introduce a set of trade-off

optimal solutions (i.e. Pareto-optimal solutions), instead of a single
optimum solution. It then becomes critical to find as many of Pareto-
optimal solutions as possible because any two optimal solutions form a
trade-off between the objectives such that users will be in a better po-
sition to make an adequate choice from compromised (trade-off) solu-
tions.

The evolutionary algorithm (EA) inspired by biological evolution is
a generic population-based metaheuristic optimization algorithm. The
EA can identify a diverse set of Pareto-optimal solutions to provides a
spread of solutions that well converge to the non-dominated set for the
problem investigated (Coello et al., 2006; Goldberg and Kuo, 1987).
The compromised solutions produced from EAs usually perform better
than traditional optimization solutions, and their tradeoffs are very
useful when making a sound decision from alternative options. The
non-dominated sorting genetic algorithm (NSGA-II) proposed by Deb
et al. (2002) belongs to contemporary multi-objective EAs. The NSGA-II
contains few tuning parameters but exhibits high performance, which
makes itself very applicable to various kinds of optimization problems
(Nicklow et al., 2010). There is noticeably increasing interest in the
development and applicability of biologically-based EAs for solving
multi-objective optimization problems in diversified water resources
management issues, such as reservoir management (Chang and Chang,
2009; Davidsen et al., 2015; Ehteram et al., 2017; Lerma et al., 2015;
Srinivasan and Kumar, 2018; Tsai et al., 2015, 2016), water utilization
(Davijani et al., 2016; Li et al., 2018; Matrosov et al, 2015; Ormsbee
and Lansey, 2015; Zheng et al., 2015), urban drainage system (Barreto
et al., 2009; Li et al, 2015; Rathnayake, 2016; Yazdi et al., 2016), en-
ergy management and conversion (Feng et al., 2018; Karami et al,
2018; Peralta et al., 2014; Yang et al., 2015), sustainable groundwater
modeling (Sadeghi-Tabas et al.,2017; Sreekanth et al., 2016; Yeh,
2015), and flood forecasting (Chang et al., 2016; Taormina et al., 2015;
Zheng et al., 2015). These studies showed that EAs were flexible and
powerful tools in solving an array of complex water resources problems.

Although the optimal control in urban drainage networks has re-
cently caught the attention of numerous policy-making and regulatory
agencies, it has been rarely addressed regarding the integrated en-
gineering system for its planning, regulation, and management in an
interdisciplinary way. This work specifically fills this gap by addressing
the integrated multi-site flood control system. In particular, this study
intends to develop a methodology that determines the optimal multi-
objective pump operation rules using EAs so that the pump operation
system can be more intelligent in optimizing its efficiency, effective-
ness, and flexibility for flood control management. The requirements
and basic components of the optimal pump operation rules accounting
for carryover storage are presented and discussed. The Yu–Cheng
pumping station and its drainage area in Taipei, Taiwan, forms the
study case. The applicability and reliability of the proposed metho-
dology is examined in light of the limitations on the existing pump
operation and operator acceptance.

2. Study area and datasets

Taiwan is located in the subtropical jet stream monsoon zone of the
North Pacific Ocean. Taipei City is the political, economic and cultural
center of Taiwan, and the Taipei metropolitan area has a population
over 7 million. Taipei City is surrounded by three confluent rivers
flowing to the ocean through a narrow estuary. It is difficult for the city
to effectively discharge massive flood water such that flood hazards
may take place easily during typhoon/storm periods. Consequently,
high levees were built along the river for preventing the city from
flooding. Typhoons are usually coupled with intensive rainfalls, and
thus urban flooding could occur within a few hours in Taipei City.
Because of high levees, floodwater inside the levee system has become
the main threat to the city nowadays. Therefore, pumping stations are
facilitated to manage internal storm water for flood mitigation.

The Yu–Cheng catchment located in southeastern Taipei is the study
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area (Fig. 1(a)). This catchment occupying an area of about 1627 ha
constitutes the biggest drainage system in Taipei City. The Yu–Cheng
pumping station, with two operational sites, is the largest pumping
station in the city. The original pumping capacity is 184.1 cms, which
can deal with rainfall intensity up to 42.5 mm/hr. A near-by station
expansion with a pumping capacity of 50.0 cms was built later on to
join pump operation for coping with rainfall intensity of 56mm/hr.
Consequently, the total pumping capacity reaches 234.1 cms. The joint
operation of the two connected sites did achieve expected performance
during typhoon/storm events. However, due to climate change in re-
cent years, it is imperative to make some adjustments on pump op-
eration based on the accumulated experience in managing water levels

to ensure the safety of residents in the future.
The station is equipped with a total of 11 pumps. Site 1 installs 7

pumps (#1−#7) with an overall pumping capacity reaching 184.1 cms
(26.3 cms/pump) while Site 2 installs 4 pumps (#8−#11) with an
overall pumping capacity reaching 50.0 cms (12.5 cms/pump).
Fig. 1(b) shows the hydrological/hydraulic connections between Site 1
and Site 2, where Sites 1 and 2 are connected by a water diversion box
culvert of size 5.0 m×3.2m and a back-up box culvert of size
4.1 m×3.5m. It is noted that pumps (26.3 cms/pump) in Site 1 have
the same performance curve, which means all pumps have equal
pumping capacity (similarly for discharge rate) under the same water
level and water head. Pumps (12.5 cms/pump) in Site 2 also have the

 
(a) Location of the Yu–Cheng catchment 

 
(b) Hydrological/hydraulic connections between Site 1 and Site 2 of the Yu-Cheng 
pumping station 

Fig. 1. Study area. (a) location of the Yu–Cheng catchment, and (b) hydrological/hydraulic connections between Site 1 and Site 2 of the Yu-Cheng pumping station.
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same performance curve. However, the performance curves of Site 1
and Site 2 are different.

Pump operation highly depends on the water level of the flood
storage pond (FSP), i.e. carryover storage. For Site 1, pumps are acti-
vated with a 3-minute warm up if the FSP water level reaches the
warning level (1.8 m). Then inner water will be pumped out to the
surrounding river (i.e. the Keelung River) of the station as soon as the
FSP water level reaches the start level (2.2 m). Similar actions will be
taken for Site 2, whose warning and start levels are 2.4m and 2.6 m,
respectively. Pump operation begins with Site 1, and Site 2 will join the
operation as soon as all the 7 pumps in Site 1 are activated.

In this study, the investigative data were collected from 17 ty-
phoon/storm events at a temporal resolution of 10min during 2004 and
2014, including FSP water levels, river water levels, historical pumping
records and pump performance curves. A total of 2,789 datasets are
adopted to construct the optimal pump operation model, in which the
numbers of datasets allocated into training and testing phases are 2,473
(13 storm events) and 316 (4 storm events), respectively (Table 1).

3. Methodology

The optimization model of an urban drainage system involves a set
of equations that give an evaluation of the system’s variables and their
responses to control actions at the gates. The main objective of this
study is to develop an intelligent flood drainage system accounting for
carryover storage that optimizes multi-objective pump operation rules
for minimizing the urban flood risk for the largest pumping station in
Taipei City during storm events. We propose a two-tier sorting process
based on Pareto-optimal solutions of the NSGA-II to formulate the op-
timal multi-objective pump operation rules. The proposed methodology
first adopts 13 storm events to construct the optimal pump operation
rules and then uses 4 storm events to evaluate the reliability and
practicability of the constructed rules through an operational compar-
ison between the optimal operation rules and the current ones. The
research framework is presented in Fig. 2, and a detailed description of
the methodology is introduced as follows.

3.1. Nsga-II

The goal of an optimization model is to recognize the best control
trajectory for each actuator during the upcoming control horizon. The
best set of control trajectories is the one that optimizes the objectives
under the given constraints (Lund et al., 2018). In this study, the

optimal pump operation is conducted by the NSGA-II for mitigating
unban flood risk as well as reducing energy consumption. The NSGA-II
has the merit of coping better with computational complexity, non-
elitism approach, and the need for specifying a sharing parameter. It
can obtain a much better spread of Pareto-optimal solutions and better
convergence, compared to other multi-objective optimization algo-
rithms (e.g. Pareto-archived evolution strategy and strength-Pareto EA,
two other elitist multi-objective EAs) (Deb, 2002). The implementation
procedure of the NSGA-II is briefly summarized as follows.

Step 1: Randomly initialize a population P0 of size N , apply the fast
non-dominated sorting, and compute the crowding distances of the
population.

Step 2: Implement reproduction, crossover and mutation to generate
an offspring population Qt .

Step 3: Evaluate the fitness values. Calculate the fast non-dominated
sorting and crowding distances of Pt and Qt to generate an offspring
population +Pt 1 of size N .

Step 4. Repeat Steps 3 and 4 until reaching the stop criterion.
P0 denotes the N sets of operation rules that are randomly gener-

ated. In this study, each set of operation rules contains 22 points (11
FSP water levels (X-axis), and 11 water heads (Y-axis)), which support
the NSGA-II to conduct the optimal search.

Model optimization involves both decision variables and con-
straints. We adapt a simple constraint-handling strategy to the NSGA-II.
The strategy assigns each infeasible solution with an overall constraint
violation value while assigns a feasible solution with a zero value of
constraint violation. Each feasible solution receives a better non-dom-
ination rank than all infeasible solutions. Correspondingly, an infeasible
solution would receive a better non-domination rank if it has a smaller
overall constraint violation value than the others. The parameter setting
of the NSGA-II model is listed in Table 2.

Multi-objective optimization commonly has two goals: converging
to the Pareto Front, and maintaining the diversity of the Pareto-optimal
solutions. The diversity metric Δ is defined as Eq. (1).

Table 1
Typhoon and storm events used for model training and testing.

Event number Year Duration (MM/DD) Event name Total rainfall (mm)

Training phase (number of dataa: 2,473)
1 2004 09/11–09/13 HAIMA 381
2 2004 10/25–10/26 NOCK-TEN 117
3 2004 12/03–12/04 NANMADOL 130
4 2005 07/18–07/19 HAITANG 73
5 2005 08/31–09/01 TALIM 108
6 2006 09/10–09/11 910 Storm 114
7 2008 09/13–09/15 SINLAKU 458
8 2008 09/28–09/29 JANGMI 172
9 2009 10/04–10/06 PARMA 115
10 2010 10/21–10/23 MEGI 146
11 2012 06/12–06/13 612 Storm 225
12 2012 08/01–08/03 SAOLA 208
13 2014 05/20–05/21 520 Storm 257
Testing phase (number of dataa: 316)
14 2013 05/11–05/11 511 Storm 47
15 2013 07/13–07/13 SOULIK 49
16 2013 08/21–08/22 TRAMI 78
17 2013 08/31–09/02 KONG-REY 117

a Time step size: 10min

Fig. 2. Research framework.
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where di is the Euclidean distance between consecutive solutions in the
Pareto-optimal set of solutions; df and dl are the distances between the
extreme solutions and the boundary solutions, respectively ( = =d d 0f l

in this case); and d̄ is the average distance of all distances di.

3.2. Objectives

The purpose of applying the optimal control is to compute feasible
strategies for the actuators in the network, which produces the best
admissible states of the network. The goals of urban drainage systems
are generally concerned with flood prevention and minimization of the
combined sewer overflow to the environment. In this study case, flood
prevention gains the top priority. Flood damages can be greatly miti-
gated through careful scheduling of pump operation, which is highly
sensitive to the FSP water level. According to pump performance
curves, the water head (i.e. the water level difference between the FSP
and the river) significantly influences pumping capacity. The larger the
water head is, the lesser the water a pump discharges. This study aims
at developing the optimal multi-objective pump operation rules using
the NSGA-II, with a close assessment on the collaborative impacts of
FSP water level and water head on pump operation. We consider three
objectives, which are: (1) OBJ1 that minimizes the sum of FSP water
level fluctuation to make smooth pump operation; (2) OBJ2 that
minimizes the sum of peak FSP water levels to reduce urban flood ha-
zards; and (3) OBJ3 that minimizes the accumulated absolute difference
of pump switches between two consecutive times along the operation
sequence to avoid frequent switch on/off of a pump within a short time.

OBJ1 minimizes the sum of FSP water level fluctuations for typhoon
events, as shown in Eq. (2).

∑ ∑= −
= =

−MinOBJ WL WL1(m) | |
k t

T

k k t
1

K

2
,t , 1

(2)

where WLk,t is the FSP water level; K is the number of training events
(13 in this study case); k is the training event; T is the number of time
steps in the kth event; and t is the time step in the kth event. The time
interval is 10min in our case.

One way to reduce the risk of urban flood hazard is to minimize the
peak FSP water level, which can be achieved through rapidly starting
up pumps to discharge the inner storm water into the surrounding river.
Therefore, OBJ2 minimizes the sum of the peak FSP water levels for
typhoon events, which is formulated in Eq. (3).

∑=
=

MinOBJ WL2(m) max( )
k

K

k
1 (3)

where WLmax( )k is the peak of the FSP water level in the kth event.

Pump operation should avoid frequent switch on/off of a pump
within a short time, otherwise it would increase energy consumption
and damage the pump and therefore raise its maintenance cost. We
notice that considering the number of pump switches instead of real
maintenance cost is a means to simplifying the problem for formulating
it mathematically (Makaremi et al., 2017). The third objective function
proposed in this study aims at tackling this issue by minimizing the
number of pump switches to provide operators with optimal scheduling
programs. The formulation of the third objective function, OBJ3, is to
minimize the mean absolute difference in the numbers of duty pumps
between t and t+ 1 along operation sequences, as shown in Eq. (4).

=
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∑

= = −

=

MinOBJ pumps
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| |k
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k t k t
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K

k
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where NPk,t is the number of duty pumps in the kth event at time step t ,
and TSk is the total number of time steps in the kth event.

3.3. Constraints

Constraint setting usually confines the search space and avoids the
occurrence of abnormal conditions, for instance when the FSP water
level is higher than the maximum FSP water level, or the number of
duty pumps exceeds the maximum number of available pumps. In this
study, constraints involve the number of pumps, FSP water level, and
water head.

The number of duty pumps should fall between 0 and the number of
available pumps (Eq. (5)).

≤ ≤ NP0 NPk t max, (5)

where NPk t, is the number of duty pumps in the kth event at time step t ,
and NPmax is the maximum number of available pumps.

Due to urbanization and climate change, flash floods usually cause a
very quick increase in the FSP water level. In practice, operators may
activate pumps to discharge water even though the FSP water level is
lower than the start level (2.2 m) of current operation rules. Therefore,
the start level is re-designed as 1.8m for adapting to practical operation
when searching for the optimal operation rules in this study. These
constraints are formulated as follows.

≤ ≤ = −m WL m p Site1.8 2.7 #1 #7( 1)p (6)

≤ ≤ = −m WL m p Site2.7 5.0 #8 #11( 2)p (7)

where WLp is the FSP water level for the pth pump.

≤ ≤ = −WH m p Site0 5.20 #1 #7( 1)p (8)

≤ ≤ = −WH m p Site0 7.25 #8 #11( 2)p (9)

where WHp is the water head (the water level difference between the
FSP and the river) for the pth pump.

= + −+WL WL WL Inflow WL Outflow( ) ( )k k k t k t,t 1 ,t , , (10)

where k is the training event; t is the time step in the kth event;
WL Inflow( )k t, and WL Outflow( )k t, are the FSP water levels converted
from inflow and outflow in the kth event at time step t, respectively.

Consequently, the performance of the obtained optimal pump op-
eration rules is compared with that of current pump operation rules to
evaluate the reliability and practicability of the proposed model. The
NSGA-II algorithm implemented in this study was re-written using
Microsoft Visual Studio C# programming language based on the NSGA-
II algorithm (written in C-language) released in Deb (2002).

4. Results and discussion

This study proposes an optimization framework determining a set of
pump operating rules that are optimal with respect to multiple objec-
tives for an integrated urban drainage/river system accounting for

Table 2
NSGA-II parameter setting.

Parameter Attribute

Encoding Real code
Number of chromosomes 22a

Population size 1000
Generation 500
Reproduction method Tournament
Crossover method Simulated Binary Crossover, SBX, Probability:

80%
Mutation method Polynomial Mutation; Probability: 5%
Number of objective functions 3
Number of constrains 5 (NPk t,

b+ 11+11)

a A total of 11 pumps, and each requires the determination of two values (the
start level to pump water and the water head).

b NPk t, : the number of duty pumps in the kth event at time step t
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carryover storage across a variety of typhoon/storm events.

4.1. Optimization of multi-objective pump operation

For a nontrivial multi-objective optimization problem, objective
functions may conflict with each other while there are a set of Pareto
compromised solutions that are considered equally good. Our mission is
to find a set of Pareto-optimal solutions that satisfy the diverse pre-
ferences of decision makers. The search for the Pareto Front of the
optimal operation rules subject to objectives and constraints is con-
ducted by the NSGA-II based on 2,473 datasets of 13 storm events.
Fig. 3 indicates that the NSGA-II search procedure can well converge
before 100 generations for all the three objectives, i.e. the three ob-
jective functions converge into relatively small ranges after a certain
number of search generations.

Fig. 4 presents the Pareto Front of 1,000 converged solutions in a
three dimensional view corresponding to the three objectives. Fig. 4(a)
shows that the solutions to OBJ1 fall within 137m−145m, the solu-
tions to OBJ2 fall within 37.6m−38.4 m, and the solutions to OBJ3 fall
within 0.37 pumps/time step−0.45 pumps/time step. Fig. 4(b)−(d)
show the results of OBJ1 vs. OBJ2, OBJ1 vs. OBJ3 and OBJ2 vs. OBJ3,
respectively. In sum, OBJ2 has negative correlations with OBJ1 and
OBJ3 (Fig. 4(b) and (d)) while OBJ1 and OBJ3 are positively correlated

(Fig. 4(c)). It appears that there exist several short horizontal lines that
aggregate many solutions in Fig. 4(b) and (d), which suggest the sum of
peak FSP water levels (OBJ2) remains the same while the other two
objectives would fluctuate widely. It is noted that Solutions I-5 and I-
632 produce the highest values for OBJ2 but the lowest values for OBJ1
and OBJ3, while Solutions I-209 and I-267 produce the lowest values
for OBJ2 but the highest values for OBJ1 and OBJ3 (Fig. 4(d)).

4.2. Assessment of the optimal pump operation

Fig. 5 illustrates the simulated results (number of duty pumps and
FSP water level) along the time sequence of Typhoon SAOLA (2012)
concerning four selected optimal solutions obtained from the NSGA-II.
Fig. 5(a) and (b) show that the number of duty pumps and the FSP
water level associated with Solutions I-5 and I-632 do not make much
difference over time, except for only a few time points (time steps).
Fig. 5(c) and (d) show similar results for Solution I-5 and I-632. That is
to say, the number of duty pumps and the FSP water level associated
with these two solutions are almost the same along the time sequence,
except for only a few time points (after the 121th time step).

4.3. Features of the optimal pump operation

The 1000 optimal solutions displayed in Fig. 4(c) can be clearly
distinguished into three groups (i.e. Groups 1–3). We further explore
the specific features of Groups 1–3 using 3D representation, as shown in
Fig. 6(a)–(c), respectively. Fig. 6(a) displays the optimal solutions re-
presentative of larger peak FSP water levels (OBJ2, red or yellow) but
smaller FSP water level fluctuations (OBJ1) and smaller differences in
the number of duty pumps (OBJ3). In contrast, Fig. 6(c) displays the
optimal solutions representative of smaller peak FSP water levels
(OBJ2, from light blue to blue) but larger FSP water level fluctuations
(OBJ1) and larger differences in the number of duty pumps (OBJ3).
Alternatively, Fig. 6(b) displays the optimal solutions representative of
medium-sized peak FSP water levels (OBJ2, green or light blue).

4.4. Comparison between the optimal operation rules and current operation
rules

Table 3 shows the comparison of the pump operational results be-
tween the optimal rules obtained from the NSGA-II and the current
rules. For OBJ1, the minimal value of the optimal operation rules oc-
curs at 137.22m, which is approximately half of the value (247.98 m)
of current operation rules. It means current operation rules would
produce more fluctuations in the FSP water levels and therefore cause
operators to switch on/off pumps more frequently, which suggests the
optimal operation rules are much more effective than current operation
rules. For OBJ2, the minimal value (37.72 m) of the optimal operation
rules is less than that (39.01m) of the current operation values, which
suggests the optimal operation rules produce a better result (effectively
decrease the peak FSP water level as well as reduce the flood risk). For
OBJ3, the minimal value (0.38 pumps/time step) of the optimal op-
eration rules is only about 1/4 of the value (1.46 pumps/time step) of
current operation rules, which shows the efficiency (switch on/off
pumps less frequently) of the optimal operation rules. In brief, the
optimal operation rules deliver superior results than current operation
rules in the perspectives of all the three objectives. Table 3 also shows
the objective values of a compromised solution (the black dot shown in
Fig. 4) randomly selected from the 1000 Pareto-optimal solutions. It
appears that the compromised solution performs much better than the
current pump operation rules in terms of all three objective functions
(OBJ1-OBJ3), which evidently explains the true meaning (benefit &
effectiveness) of the Pareto Front in a trade-off sense.

As a result, the optimal operation rules obtained from the NSGA-II
not only could significantly decrease the frequency of switching on/off
pumps but could effectively mitigate the fluctuations of the FSP water

(a) OBJ1

(b) OBJ2

(a) OBJ3

Fig. 3. Optimal values of three objective functions obtained from the search
procedure of the NSGA-II.
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(a) Pareto Front among OBJ1, OBJ2, and OBJ3 (b) OBJ1 vs. OBJ2 

(c) OBJ1 vs. OBJ3 (d) OBJ3 vs. OBJ2 

Fig. 4. Pareto Front of 1000 converged solutions obtained the NSGA-II. The black dot shown in (b)-(d) is a comprised solution randomly selected from the Pareto
Front. I-5, I-632, I-209 and I-267 are the optimal solutions selected from the Pareto Front for further investigation.

(a) Number of duty pumps_I-005 & I-632 (b) FSP water level_I-005 & I-632 

(c) Number of duty pumps_I-209 & I-267 (d) FSP water level_ I-209 & I-267 

Fig. 5. Simulated operation results along the time sequence of Typhoon SAOLA (2012) based on four optimal solutions obtained from the NSGA-II (Solutions I-5 & I-
632 and I- Solutions 209 & I267, as shown in Fig. 4(d)).
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level. Besides, the optimal operation rules could effectively reduce the
peak FSP water levels during typhoon events and therefore significantly
decrease the risk of overflow from the FSP into the city. The Pareto-
optimal solutions suggest practical management options for decision
makers and operators to manage the pump operational system. When
comparing the existing and alternative pump operational schemes, the
NSGA-II results (alternative schemes) would significantly improve the
performance of the three objective functions (OBJ1-OBJ3) for the pump
operational system, where the number of duty pumps could be reduced
and the peak FSP water level could be decreased during flood events.
We conclude that the optimal pump operation rules obtained from the
NSGA-II could significantly mitigate the flood risk of Taipei City.

4.5. Optimal operation rules and performance evaluation

Fig. 7 presents the optimal pump operation rules associated with the
selected compromised solution (the black dot shown in Fig. 4) and the
current pump operation rules. It is noted that the Yu-Cheng pumping
station has eleven pumps (seven in Site 1 and four in Site 2), which are
jointly operated (Site 1 gains higher priority in operation than Site 2).

(a) Group 1 

(b) Group 2 

(c) Group 3 

Fig. 6. 3D representations with respect to Groups 1, 2 and 3 shown in Fig. 4(c).
The black dots in each subfigure denote the Pareto Front solutions that spread
over the relevant search space.

Table 3
Operational results of the 13 events (the training set) based on the optimal
pump operation rules and current pump operation rules, respectively.

Pump operation rules Objective value

OBJ1 (m) OBJ2 (m) OBJ3 (pumps/
time step)

Optimal operation rules obtained
from the NAGA-II

Minimum value of OBJ1 137.223c 38.361 0.384
Minimum value of OBJ2 144.134 37.724 0.443
Minimum value of OBJ3 138.034 38.366 0.378
Selected compromised

solutiona
141.010 37.920 0.421

Current operation rules 247.982 39.013 1.462
Improvement rateb 43.1% 2.8% 71.2%

a Selected compromised solution: the black dot shown in Fig. 4.
b Comparison between the optimal operation rules and current operation

rules (benchmark) with respect to the selected compromised solution. For in-
stance, 43.1% = (247.98–141.01)/247.98*100

c a value in bold denotes the minimum in its own category.

(a) Current operation rules 

(b) Optimal operation rules (NSGA-II) 

Fig. 7. Pump operation rules. (a) current operation rules; and (b) the optimal
operation rules associated with the selected compromised solution (the black
dot shown in Fig. 4) obtained from the NSGA-II. The blue zone represents the
operation of Site 1 only. The brown zone represents the joint operation of Site 1
and Site 2. The number shown in each sub-zone (stripe) denotes the number of
duty pumps between two operation rules (i.e. the laddered FSP water level).
Numbers in green denote duty pumps of Site 1 while numbers in red denote
duty pumps of Site 2.
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To better depict the joint operation, each subfigure of Fig. 7 is divided
into two zones: the blue zone represents the operation of Site 1 only,
and the brown zone represents the joint operation of Site 1 and Site 2.
The number shown in each sub-zone (stripe) denotes the number of
duty pumps between two operation rules (i.e. the laddered FSP water
level). Numbers in green denote duty pumps of Site 1 while numbers in
red denote duty pumps of Site 2.

Fig. 7(a) reveals that the activation of pumping activity under cur-
rent operation rules depends solely on the FSP water level, which in-
evitably causes operators to frequently switch on/off pumps in response
to the dynamic fluctuations of the FSP water level, especially when
flash floods occur. Such a phenomenon can be observed in Figs. 8 and 9
(operation hydrographs of a training case and a test case, respectively).
In contrast, the optimal operation rules configured by the NSGA-II
consider the FSP water level and the water head simultaneously.
Fig. 7(b) shows the optimal operation rules of the selected compro-
mised solution. The pump operation in Site 1 follows Eqs. (6) and (8),
i.e. the FSP water level ∈【1.8 m, 2.7m】 and the water head ∈【0 m,
5.2 m】, while the pump operation in Site 2 follows Eqs. (7) and (9), i.e.
the FSP water level ∈【2.7 m, 5.0m】 and the water head ∈【0 m,
7.25m】. The optimal operation rules of each compromised solution in
the Pareto Front could be derived from a two-tier sorting process, in-
troduced as follows. The number of duty pumps associated with FSP
water level and water head can be drawn by sorting the 22 chromo-
somes (Table 2). The two-tier sorting process begins with the sorting of

the 22 chromosomes in an increasing order along the Y-axis (water
head), followed by the sorting along the X-axis (FSP water level). The
sorted pairs are denoted as 【(X1, Y1),…, (X2, Y2), (X3, Y3),…, (X11,
Y11)】, where Xi≤ Xi+1, i= 1,…, 11; and Yj≤ Yj+1, j= 1,…, 11. The
sorted pairs can be used to construct the optimal operation rules by
linking these pairs in the following way: 1) linking coordinates (Xi, 5.2),
i = 1,…, 7 (Eq. (8)); and 2) linking coordinates (Xi, 7.25), i = 8,…, 11
(Eq. (9)). According to the optimal operation rules shown in Fig. 7(b),
Point A (2.35 m FSP water level and 3m water head) requires 4 duty
pumps; Point B (2.8 m FSP water level and 3m water head) requires 8
duty pumps; and Point C (2.8 m FSP water level and 0.5 m water head)
requires 6 duty pumps.

Fig. 7(b) further demonstrates that the number of duty pumps can
be determined collaboratively by FSP water level and water head. It is
noted that the optimal operation rules require fewer duty pumps than
current operation rules under the same FSP water level when the FSP
water level exceeds 2.6m. For instance, the optimal operation rules
associated with Point C require only 6 pumps but current operation
rules require 10 pumps. When the FSP water level is less than 2.6 m, the
optimal operation rules require more duty pumps than current opera-
tion rules at the same FSP water level. The reason is that for lower FSP
water levels (less than2.6 m), it is advised to reserve more flood storage
capacity by discharging water from the FSP at the early stage such that
the possible serious fluctuation of the FSP water level can be reduced in
future pump operation. Such advantages can be observed from Fig. 5,

(a) Number of duty pumps 

(b) FSP water level 

Fig. 8. Comparision of the simulated results based on the optimal operation rules obtained from the NSGA-II and current opertion rules for a training case (612 Storm
Event, 2012). (a) the number of duty pumps; and (b) FSP water level.
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which shows the hydrographs of the optimal and current operation
rules, respectively. For flood risk mitigation, decisions often have to be
made based on complex information. We have noticed that researchers
have endeavored to develop mathematical decision-making models in
consideration of flood risks. The optimal pump operation rules pro-
posed in this study provide more flexibility, stability, and reliability in
pump operation than current operation rules by collaboratively in-
corporating the water head into pump operation.

This study further evaluates the performance of the proposed
methodology based on one training case and four test cases. Table 4
presents the individual performance of the optimal operation rules and
current operation rules for these five events, respectively. The results
demonstrate that the optimal operation rules make significant im-
provement (improvements rates: 19.8%–72.4% for OBJ1; 1.0%–6.3%
for OBJ2; and 53.9%–86.4% for OBJ3), taking current operation rules
as the benchmark.

We noticed that the total number of pump switches along the op-
eration sequence differed event by event because storm durations were
different from each other. Therefore, OBJ3 is defined as the total pump
switches divided by the total time steps (pumps/time step). This is the
reason why a decimal point may occur in the optimal results of OBJ3.
When applying the OBJ3 results to actual operation, the number of
activated pumps during control horizon could simply be identified
based on the corresponding FSP water level and water head according
to the optimal operation rules of Fig. 7(b). Examples are shown in
Figs. 8 and 9.

Fig. 8 shows the comparative results of the optimal operation rules
and current operation rules for the 612 Storm Event (a training case),
respectively. We notice from Fig. 8(a) that the number of duty pumps
derived from the optimal operation rules generally increases over time
in the rising stage of the FSP water level, then keeps nearly flat in the
peak stage, and decreases over time in the descending stage. Never-
theless, current operation rules make frequent jumps/drops on the
number of duty pumps throughout the whole operational sequence.
Fig. 8(b) reveals that the curve of the FSP water level associated with
the optimal operation rules is much more stable and smoother than that
of current operation rules. This also indicates that the optimal operation
rules can avoid switching pumps on and off frequently. These results
also disclose the advantages of the optimal operation rules.

Fig. 9 shows the comparative results of the optimal operation rules
and current operation rules for the event of Typhoon KONG-REY (a test
case), respectively. Fig. 9(a) reveals that the number of duty pumps
suggested by the optimal operation rules fluctuates at each time step
less than that for current operation rules, especially during the 21th and
the 60th time steps (the peak stage of the FSP water level). Besides, the
maximum numbers of duty pumps are 7 and 10 for the optimal op-
eration rules and current operation rules, respectively. Fig. 9(b) reveals
that the FSP water level of the optimal operation rules is more stable
and smoother than that of the current rules. This again demonstrates
that the optimal operation rules can avoid frequent switch on/off of
pumps. The results also give the evidence on the advantages of the
optimal operation rules.

Fig. 9. Comparision of the simulated results based on the ptimal operation rules obtained from the NSGA-II and current opertion rules for a test case (Typhoon
KONG-REY, 2013). (a) the number of duty pumps; and (b) FSP water level.
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5. Conclusion

Intelligent management of urban drainage systems is an efficient
way to take full advantage on the capacity of a drainage system to re-
duce flood risks. This study proposes an AI-based design of urban
stormwater detention facilities accounting for carryover storage to en-
hance the efficiency and reliability of the drainage infrastructure. The
proposed model transforms pump operation into three main objectives
for increasing the efficiency of pump operation and reducing flood
risks, with a close assessment on the collaborative impacts of FSP water
level and water head on pump operation. The results of four test cases
demonstrate the superiority of the optimal operation rules to current
operation rules in the perspectives of all the three objectives, with
improvement rates reaching 43% (OBJ1), 3% (OBJ2) and 71% (OBJ3),
respectively. The optimal operation rules could diminish flood risk,
decrease the total number of duty pumps significantly, and avoid
switching on and off pumps frequently, which largely reduce energy
consumption as well as wear and tear of pumping facilities. Moreover,
the obtained optimal results favorably fulfill the expectation of ex-
perienced operators. In other words, the optimal operation rules are
reliable and applicable, and they can satisfactorily benefit and assist
operators in practice.

Furthermore, the urban drainage system is a complex task and re-
quires a number of mutually interdependent choices. Therefore, the
formulation of an optimization model is a crux choice from the begin-
ning, which would involve trade-offs between the number of optimi-
zation variables and the degree of details lying in the internal systems
(Lund et al., 2018). The multi-objective optimization approach pro-
posed in this study demonstrates to well fit these key considerations
within the wider urban drainage control literature. We conclude that
the optimal operation rules proposed by our methodology could miti-
gate the fluctuation of the FSP water level and minimize the total
number of duty pumps during the whole operation period so as to re-
duce the flood risk in Taipei City. Consequently, the socio-economic
welfare of the society can be maximized. Future study can incorporate
predictions of the future system state and climatic forecasts to enhance
the multi-objective pump operation several steps ahead while reducing
the uncertainty of the drainage system.
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